A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer J Hesse, J Martinelli, O Aboumanify, A Ballesta, A Relógio Computational and Structural Biotechnology Journal 19, 5170-5183, 2021 | 33 | 2021 |
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources P Mikkola, J Martinelli, L Filstroff, S Kaski Proceedings of The 26th International Conference on Artificial Intelligence …, 2022 | 10 | 2022 |
Model learning to identify systemic regulators of the peripheral circadian clock J Martinelli, S Dulong, XM Li, M Teboul, S Soliman, F Lévi, F Fages, ... Bioinformatics 37 (1), i401-i409, 2021 | 9 | 2021 |
A statistical unsupervised learning algorithm for inferring reaction networks from time series data J Martinelli, J Grignard, S Soliman, F Fages ICML 2019-Workshop on Computational Biology, 2019 | 5 | 2019 |
Bayesian Active Learning in the Presence of Nuisance Parameters S Sloman, A Bharti, J Martinelli, S Kaski Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence …, 2024 | 4* | 2024 |
Accelerating metabolic models evaluation with statistical metamodels: application to Salmonella infection models C Frioux, S Huet, S Labarthe, J Martinelli, T Malou, D Sherman, ... ESAIM: Proceedings and Surveys 73, 187-217, 2023 | 4 | 2023 |
Leveraging expert feedback to align proxy and ground truth rewards in goal-oriented molecular generation J Martinelli, Y Nahal, D Lê, O Engkvist, S Kaski New Frontiers of AI for Drug Discovery and Development NeurIPS 2023 Workshop, 2023 | 2 | 2023 |
Reactmine: a statistical search algorithm for inferring chemical reactions from time series data J Martinelli, J Grignard, S Soliman, A Ballesta, F Fages arXiv, 2023 | 2 | 2023 |
Challenges in interpretability of additive models X Zhang, J Martinelli, ST John IJCAI 2024 Workshop on Explainable Artificial Intelligence (XAI), 2024 | 1 | 2024 |
On inferring reactions from data time series by a statistical learning greedy heuristics J Martinelli, J Grignard, S Soliman, F Fages Computational Methods in Systems Biology: 17th International Conference …, 2019 | 1 | 2019 |
Proxy-informed Bayesian transfer learning with unknown sources S Sloman, J Martinelli, S Kaski arXiv, 2024 | | 2024 |
Computation-Aware Robust Gaussian Processes M Sinaga, J Martinelli, S Kaski NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty, 2024 | | 2024 |
PABBO: Preferential Amortized Black-Box Optimization X Zhang, D Huang, J Martinelli, S Kaski Openreview, 2024 | | 2024 |
Human-in-the-loop active learning for goal-oriented molecule generation Y Nahal, J Menke, J Martinelli, M Heinonen, M Kabeshov, JP Janet, ... ChemrXiv, 2024 | | 2024 |
Heteroscedastic Preferential Bayesian Optimization with Informative Noise Distributions M Sinaga, J Martinelli, V Garg, S Kaski arXiv, 2024 | | 2024 |
Learning relevant contextual variables within Bayesian Optimization J Martinelli, A Bharti, A Tiihonen, ST John, L Filstroff, S Sloman, P Rinke, ... Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence …, 2024 | | 2024 |
Preferential Heteroscedastic Bayesian Optimization with Informative Noise Priors M Sinaga, J Martinelli, S Kaski NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in …, 2023 | | 2023 |
On learning mechanistic models from time series data with applications to personalised chronotherapies J Martinelli Ecole polytechnique, 2022 | | 2022 |
Apprentissage de modèles mécanistiques du système circadien, vers la personnalisation de la chronothérapie des cancers J Martinelli, S Dulong, XM Li, M Teboul, S Soliman, F Lévi, F Fages, ... Médecine du Sommeil 18 (4), 190, 2021 | | 2021 |