Suivre
Jayneel Parekh
Jayneel Parekh
ISIR, Sorbonne Université
Adresse e-mail validée de telecom-paris.fr - Page d'accueil
Titre
Citée par
Citée par
Année
Flexible and context-specific AI explainability: a multidisciplinary approach
V Beaudouin, I Bloch, D Bounie, S Clémençon, F d'Alché-Buc, J Eagan, ...
arXiv preprint arXiv:2003.07703, 2020
942020
A Framework to Learn with Interpretation
J Parekh, P Mozharovskyi, F d'Alché-Buc
Advances in Neural Information Processing Systems (NeurIPS 2021), 2020
402020
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF
J Parekh, S Parekh, P Mozharovskyi, F d'Alché-Buc, G Richard
Advances in Neural Information Processing Systems (NeurIPS 2022), 2022
162022
Identifying the'Right'Level of Explanation in a Given Situation
W Maxwell, V Beaudouin, I Bloch, D Bounie, S Clémençon, F d'Alché-Buc, ...
Proceedings of the First International Workshop on New Foundations for Human …, 2020
152020
Speech-to-singing conversion in an encoder-decoder framework
J Parekh, P Rao, YH Yang
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020
142020
Tackling Interpretability in Audio Classification Networks with Non-negative Matrix Factorization
J Parekh, S Parekh, P Mozharovskyi, G Richard, F d'Alché-Buc
IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP), 2023
72023
Deep pairwise classification and ranking for predicting media interestingness
J Parekh, H Tibrewal, S Parekh
ACM International Conference on Multimedia Retrieval (ACM ICMR) 2018, 428-433, 2018
62018
A Concept-Based Explainability Framework for Large Multimodal Models
J Parekh, P Khayatan, M Shukor, A Newson, M Cord
Advances in Neural Information Processing Systems (NeurIPS 2024), 2024
42024
The IITB Predicting Media Interestingness System for MediaEval 2017.
J Parekh, H Tibrewal, S Parekh
MediaEval, 2017
42017
The MLPBOON Predicting Media Interestingness System for MediaEval 2016.
J Parekh, S Parekh
MediaEval, 2016
32016
One Wave to Explain Them All: A Unifying Perspective on Post-hoc Explainability
G Kasmi, A Brunetto, T Fel, J Parekh
arXiv preprint arXiv:2410.01482, 2024
2024
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
J Parekh, Q Bouniot, P Mozharovskyi, A Newson, F d'Alché-Buc
arXiv preprint arXiv:2407.01331, 2024
2024
Un cadre flexible pour l'apprentissage automatique interprétable: application à la classification d'images et d'audio
J Parekh
Institut Polytechnique de Paris, 2023
2023
A Flexible Framework for Interpretable Machine Learning: application to image and audio classification
J Parekh
Institut polytechnique de Paris, 2023
2023
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–14