K. R. Arun
Cited by
Cited by
A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics
S Noelle, G Bispen, KR Arun, M Lukáčová-Medviďová, CD Munz
SIAM Journal on Scientific Computing 36 (6), B989-B1024, 2014
IMEX large time step finite volume methods for low Froude number shallow water flows
G Bispen, KR Arun, M Lukáčová-Medvid’ová, S Noelle
Communications in Computational Physics 16 (2), 307-347, 2014
Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions
KR Arun, M Kraft, M Lukáčová-Medvid’ová, P Prasad
Journal of Computational Physics 228 (2), 565-590, 2009
Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations
KR Arun, S Samantaray
Journal of Scientific Computing 82, 1-32, 2020
3-D kinematical conservation laws (KCL): Evolution of a surface in R3–in particular propagation of a nonlinear wavefront
KR Arun, P Prasad
Wave Motion 46 (5), 293-311, 2009
In vitro propagation of Monocot (Costus pictus D. Don)—an antidiabetic medicinal plant
AAA Bakrudeen, KR Arun
Journal of Agricultural Technology 5, 361-369, 2009
An application of 3-D kinematical conservation laws: Propagation of a 3-D wavefront
KR Arun, M Lukáčová-Medviďová, P Prasad, SVR Rao
SIAM Journal on Applied Mathematics 70 (7), 2604-2626, 2010
A second order accurate kinetic relaxation scheme for inviscid compressible flows
KR Arun, M Lukáčová-Medvidová, P Prasad, SV Raghurama Rao
Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation …, 2013
An asymptotic preserving all mach number scheme for the euler equations of gas dynamics
KR Arun, S Noelle, M Lukacova-Medvidova, CD Munz
preprint, October, 2012
A numerical scheme for three-dimensional front propagation and control of Jordan mode
KR Arun
SIAM Journal on Scientific Computing 34 (2), B148-B178, 2012
An asymptotic preserving scheme for low Froude number shallow flows
KR Arun, S Noelle
Inst. für Geometrie und Praktische Mathematik, 2012
Eigenvalues of kinematical conservation laws (KCL) based 3-D weakly nonlinear ray theory (WNLRT)
KR Arun, P Prasad
Applied Mathematics and Computation 217 (5), 2285-2288, 2010
Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system
KR Arun, AJD Gupta, S Samantaray
Applied Mathematics and Computation 411, 126469, 2021
A characteristics based genuinely multidimensional discrete kinetic scheme for the Euler equations
KR Arun, M Lukáčová-Medviďová
Journal of Scientific Computing 55, 40-64, 2013
Computational study of shock wave propagation and reflection in a micro shock tube
KR Arun, DK Heuy, S Toshiaki
HEFAT 2012, 2012
A Genuinely multi-dimensional relaxation scheme for hyperbolic conservation laws
KR Arun, SV Raghurama Rao, M Lukacova-Medvidova, P Prasad
Proceedings of the Seventh Asian CFD Conference, 1029-1039, 2007
An asymptotic preserving and energy stable scheme for the barotropic Euler system in the incompressible limit
KR Arun, R Ghorai, M Kar
Journal of Scientific Computing 97 (3), 73, 2023
An implicit–explicit scheme accurate at low Mach numbers for the wave equation system
KR Arun, AJ Das Gupta, S Samantaray
Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany …, 2018
A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation
KR Arun, M Krishnan, S Samantaray
Computers & Fluids 233, 105248, 2022
High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler–Poisson System in the Quasineutral Limit
KR Arun, N Crouseilles, S Samantaray
Journal of Scientific Computing 100 (1), 24, 2024
The system can't perform the operation now. Try again later.
Articles 1–20