Numerical treatment of two-dimensional interfaces for acoustic and elastic waves B Lombard, J Piraux Journal of Computational Physics 195 (1), 90-116, 2004 | 157 | 2004 |
Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves B Lombard, J Piraux, C Gélis, J Virieux Geophysical Journal International 172 (1), 252-261, 2008 | 127 | 2008 |
Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation E Blanc, D Komatitsch, E Chaljub, B Lombard, Z Xie Geophysical Supplements to the Monthly Notices of the Royal Astronomical …, 2016 | 95 | 2016 |
Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives E Blanc, G Chiavassa, B Lombard Journal of Computational Physics 237, 1-20, 2013 | 62 | 2013 |
A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example J Piraux, B Lombard Journal of Computational Physics 168 (1), 227-248, 2001 | 62 | 2001 |
Time domain numerical modeling of wave propagation in 2D heterogeneous porous media G Chiavassa, B Lombard Journal of Computational Physics 230 (13), 5288-5309, 2011 | 49 | 2011 |
Time-domain numerical simulations of multiple scattering to extract elastic effective wavenumbers M Chekroun, L Le Marrec, B Lombard, J Piraux Waves in Random and Complex media 22 (3), 398-422, 2012 | 41 | 2012 |
Simulating transient wave phenomena in acoustic metamaterials using auxiliary fields C Bellis, B Lombard Wave Motion 86, 175-194, 2019 | 38 | 2019 |
Numerical modeling of elastic waves across imperfect contacts. B Lombard, J Piraux SIAM journal on scientific computing 28 (1), 172-205, 2006 | 37 | 2006 |
A time-domain numerical modeling of two-dimensional wave propagation in porous media with frequency-dependent dynamic permeability E Blanc, G Chiavassa, B Lombard The Journal of the Acoustical Society of America 134 (6), 4610-4623, 2013 | 36 | 2013 |
Numerical modeling of transient two-dimensional viscoelastic waves B Lombard, J Piraux Journal of Computational Physics 230 (15), 6099-6114, 2011 | 36 | 2011 |
Wave propagation across acoustic/Biot’s media: a finite-difference method G Chiavassa, B Lombard Communications in Computational Physics 13 (4), 985-1012, 2013 | 35 | 2013 |
Generation of acoustic solitary waves in a lattice of Helmholtz resonators O Richoux, B Lombard, JF Mercier Wave Motion 56, 85-99, 2015 | 32 | 2015 |
Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations N Favrie, B Lombard, C Payan Wave motion 56, 221-238, 2015 | 31 | 2015 |
Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media G Lefeuve-Mesgouez, A Mesgouez, G Chiavassa, B Lombard Wave Motion 49 (7), 667-680, 2012 | 31 | 2012 |
Nonlinear waves in solids with slow dynamics: an internal-variable model H Berjamin, N Favrie, B Lombard, G Chiavassa Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2017 | 30 | 2017 |
How to incorporate the spring-mass conditions in finite-difference schemes B Lombard, J Piraux SIAM Journal on Scientific Computing 24 (4), 1379-1407, 2003 | 28 | 2003 |
Diffusive approximation of a time-fractional Burger's equation in nonlinear acoustics B Lombard, D Matignon SIAM Journal on Applied Mathematics 76 (5), 1765-1791, 2016 | 27 | 2016 |
Time-domain numerical modeling of brass instruments including nonlinear wave propagation, viscothermal losses, and lips vibration H Berjamin, B Lombard, C Vergez, E Cottanceau Acta Acustica united with Acustica 103 (1), 117-131, 2017 | 26 | 2017 |
A fractional Burgers equation arising in nonlinear acoustics: theory and numerics B Lombard, D Matignon, Y Le Gorrec IFAC Proceedings Volumes 46 (23), 406-411, 2013 | 25 | 2013 |