Suivre
David Belanger
David Belanger
Research Scientist, Google Brain
Adresse e-mail validée de google.com - Page d'accueil
Titre
Citée par
Citée par
Année
Rethinking attention with performers
K Choromanski, V Likhosherstov, D Dohan, X Song, A Gane, T Sarlos, ...
arXiv preprint arXiv:2009.14794, 2020
15722020
Fast and accurate entity recognition with iterated dilated convolutions
E Strubell, P Verga, D Belanger, A McCallum
arXiv preprint arXiv:1702.02098, 2017
5672017
Sequential regulatory activity prediction across chromosomes with convolutional neural networks
DR Kelley, YA Reshef, M Bileschi, D Belanger, CY McLean, J Snoek
Genome research 28 (5), 739-750, 2018
4582018
Ask the GRU Multi-task Learning for Deep Text Recommendations
T Bansal, D Belanger, A McCallum
proceedings of the 10th ACM Conference on Recommender Systems, 107-114, 2016
3872016
Chains of reasoning over entities, relations, and text using recurrent neural networks
R Das, A Neelakantan, D Belanger, A McCallum
arXiv preprint arXiv:1607.01426, 2016
3302016
Using deep learning to annotate the protein universe
ML Bileschi, D Belanger, DH Bryant, T Sanderson, B Carter, D Sculley, ...
Nature Biotechnology 40 (6), 932-937, 2022
2692022
Learning latent permutations with gumbel-sinkhorn networks
G Mena, D Belanger, S Linderman, J Snoek
arXiv preprint arXiv:1802.08665, 2018
2682018
Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 2: Nonplanar faults
EM Dunham, D Belanger, L Cong, JE Kozdon
Bulletin of the Seismological Society of America 101 (5), 2308-2322, 2011
2562011
Structured prediction energy networks
D Belanger, A McCallum
International Conference on Machine Learning, 983-992, 2016
2552016
Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, Part 1: Planar faults
EM Dunham, D Belanger, L Cong, JE Kozdon
Bulletin of the Seismological Society of America 101 (5), 2296-2307, 2011
1922011
Synthesizing normalized faces from facial identity features
F Cole, D Belanger, D Krishnan, A Sarna, I Mosseri, WT Freeman
Proceedings of the IEEE conference on computer vision and pattern …, 2017
1832017
End-to-end learning for structured prediction energy networks
D Belanger, B Yang, A McCallum
International Conference on Machine Learning, 429-439, 2017
1472017
Rapid prediction of electron–ionization mass spectrometry using neural networks
JN Wei, D Belanger, RP Adams, D Sculley
ACS central science 5 (4), 700-708, 2019
1442019
Model-based reinforcement learning for biological sequence design
C Angermueller, D Dohan, D Belanger, R Deshpande, K Murphy, ...
International conference on learning representations, 2019
1332019
Multilingual relation extraction using compositional universal schema
P Verga, D Belanger, E Strubell, B Roth, A McCallum
arXiv preprint arXiv:1511.06396, 2015
1162015
Boundless: Generative adversarial networks for image extension
P Teterwak, A Sarna, D Krishnan, A Maschinot, D Belanger, C Liu, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
1132019
ProteInfer, deep neural networks for protein functional inference
T Sanderson, ML Bileschi, D Belanger, LJ Colwell
Elife 12, e80942, 2023
992023
Masked language modeling for proteins via linearly scalable long-context transformers
K Choromanski, V Likhosherstov, D Dohan, X Song, A Gane, T Sarlos, ...
arXiv preprint arXiv:2006.03555, 2020
922020
Population-based black-box optimization for biological sequence design
C Angermueller, D Belanger, A Gane, Z Mariet, D Dohan, K Murphy, ...
International conference on machine learning, 324-334, 2020
572020
Is transfer learning necessary for protein landscape prediction?
A Shanehsazzadeh, D Belanger, D Dohan
arXiv preprint arXiv:2011.03443, 2020
542020
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20