Follow
Herke van Hoof
Title
Cited by
Cited by
Year
Addressing function approximation error in actor-critic methods
S Fujimoto, H Hoof, D Meger
International Conference on Machine Learning, 1587-1596, 2018
61032018
Attention, Learn to Solve Routing Problems!
W Kool, H van Hoof, M Welling
arXiv preprint arXiv:1803.08475, 2018
15052018
A research agenda for hybrid intelligence: augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence
Z Akata, D Balliet, M De Rijke, F Dignum, V Dignum, G Eiben, A Fokkens, ...
Computer 53 (8), 18-28, 2020
3692020
BanditSum: Extractive Summarization as a Contextual Bandit
Y Dong, Y Shen, E Crawford, H van Hoof, JCK Cheung
arXiv preprint arXiv:1809.09672, 2018
2322018
Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement
W Kool, H Van Hoof, M Welling
International Conference on Machine Learning, 3499-3508, 2019
2172019
Stable reinforcement learning with autoencoders for tactile and visual data
H van Hoof, N Chen, M Karl, P van der Smagt, J Peters
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2016
1902016
Learning Robot In-Hand Manipulation with Tactile Features
H van Hoof, T Hermans, G Neumann, J Peters
1732015
Deep policy dynamic programming for vehicle routing problems
W Kool, H van Hoof, J Gromicho, M Welling
International Conference on Integration of Constraint Programming …, 2022
1612022
Mdp homomorphic networks: Group symmetries in reinforcement learning
E van der Pol, D Worrall, H van Hoof, F Oliehoek, M Welling
Advances in Neural Information Processing Systems 33, 2020
1592020
Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks
O Kroemer, C Daniel, G Neumann, H van Hoof, J Peters
Proceedings of the International Conference on Robotics and Automation, 2015
1552015
Probabilistic inference for determining options in reinforcement learning
C Daniel, H Van Hoof, J Peters, G Neumann
Machine Learning 104, 337-357, 2016
1492016
Stabilizing novel objects by learning to predict tactile slip
F Veiga, H Van Hoof, J Peters, T Hermans
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015
1212015
A Survey of Exploration Methods in Reinforcement Learning
S Amin, M Gomrokchi, H Satija, H van Hoof, D Precup
arXiv preprint arXiv:2109.00157, 2021
1092021
Active tactile object exploration with gaussian processes
Z Yi, R Calandra, F Veiga, H van Hoof, T Hermans, Y Zhang, J Peters
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2016
1082016
Keeping dataset biases out of the simulation: A debiased simulator for reinforcement learning based recommender systems
J Huang, H Oosterhuis, M De Rijke, H Van Hoof
Proceedings of the 14th ACM Conference on Recommender Systems, 190-199, 2020
992020
Probabilistic Segmentation and Targeted Exploration of Objects in Cluttered Environments
H van Hoof, O Kroemer, J Peters
IEEE Transactions on Robotics, 2014
802014
Buy 4 REINFORCE Samples, Get a Baseline for Free!
W Kool, H van Hoof, M Welling
732019
Deep generative modeling of LiDAR data
L Caccia, H Van Hoof, A Courville, J Pineau
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019
642019
Learning to Predict Phases of Manipulation Tasks as Hidden States
O Kroemer, H van Hoof, G Neumann, J Peters
IEEE International Conference on Robotics and Automation, 2014
602014
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W Kool, H van Hoof, M Welling
arXiv preprint arXiv:2002.06043, 2020
562020
The system can't perform the operation now. Try again later.
Articles 1–20