Suivre
Emilie Kaufmann
Emilie Kaufmann
CNRS & Univ. Lille (CRIStAL)
Adresse e-mail validée de inria.fr - Page d'accueil
Titre
Citée par
Citée par
Année
Thompson sampling: An asymptotically optimal finite-time analysis
E Kaufmann, N Korda, R Munos
International conference on algorithmic learning theory, 199-213, 2012
7752012
On the complexity of best-arm identification in multi-armed bandit models
E Kaufmann, O Cappé, A Garivier
The Journal of Machine Learning Research 17 (1), 1-42, 2016
6172016
On Bayesian upper confidence bounds for bandit problems
E Kaufmann, O Cappé, A Garivier
Artificial intelligence and statistics, 592-600, 2012
4622012
Optimal best arm identification with fixed confidence
A Garivier, E Kaufmann
Conference on Learning Theory, 998-1027, 2016
3892016
Machine learning applications in drug development
C Réda, E Kaufmann, A Delahaye-Duriez
Computational and structural biotechnology journal 18, 241-252, 2020
2242020
Information complexity in bandit subset selection
E Kaufmann, S Kalyanakrishnan
Conference on Learning Theory, 228-251, 2013
2122013
Thompson sampling for 1-dimensional exponential family bandits
N Korda, E Kaufmann, R Munos
Advances in neural information processing systems 26, 2013
1932013
Mixture martingales revisited with applications to sequential tests and confidence intervals
E Kaufmann, WM Koolen
Journal of Machine Learning Research 22 (246), 1-44, 2021
1232021
On explore-then-commit strategies
A Garivier, T Lattimore, E Kaufmann
Advances in Neural Information Processing Systems 29, 2016
1232016
Multi-player bandits revisited
L Besson, E Kaufmann
Algorithmic Learning Theory, 56-92, 2018
1212018
Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited
OD Domingues, P Ménard, E Kaufmann, M Valko
Algorithmic Learning Theory, 578-598, 2021
1172021
What doubling tricks can and can't do for multi-armed bandits
L Besson, E Kaufmann
arXiv preprint arXiv:1803.06971, 2018
1122018
Multi-Armed Bandit Learning in IoT Networks: Learning helps even in non-stationary settings
R Bonnefoi, L Besson, C Moy, E Kaufmann, J Palicot
International Conference on Cognitive Radio Oriented Wireless Networks, 173-185, 2017
1062017
Adaptive reward-free exploration
E Kaufmann, P Ménard, OD Domingues, A Jonsson, E Leurent, M Valko
Algorithmic Learning Theory, 865-891, 2021
902021
Fast active learning for pure exploration in reinforcement learning
P Ménard, OD Domingues, A Jonsson, E Kaufmann, E Leurent, M Valko
International Conference on Machine Learning, 7599-7608, 2021
802021
A practical algorithm for multiplayer bandits when arm means vary among players
A Mehrabian, E Boursier, E Kaufmann, V Perchet
International Conference on Artificial Intelligence and Statistics, 1211-1221, 2020
802020
On Bayesian index policies for sequential resource allocation
E Kaufmann
The Annals of Statistics 46 (2), 842-865, 2018
762018
On the complexity of A/B testing
E Kaufmann, O Cappé, A Garivier
Conference on Learning Theory, 461-481, 2014
762014
On multi-armed bandit designs for dose-finding trials
M Aziz, E Kaufmann, MK Riviere
Journal of Machine Learning Research 22 (14), 1-38, 2021
712021
Fixed-confidence guarantees for bayesian best-arm identification
X Shang, R Heide, P Menard, E Kaufmann, M Valko
International Conference on Artificial Intelligence and Statistics, 1823-1832, 2020
682020
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20