Pascal Bégout
Pascal Bégout
Université Toulouse I Capitole
Adresse e-mail validée de math.cnrs.fr
Titre
Citée par
Citée par
Année
Mass concentration phenomena for the 𝐿²-critical nonlinear Schrödinger equation
P Bégout, A Vargas
Transactions of the American Mathematical Society 359 (11), 5257-5282, 2007
1462007
On damped second-order gradient systems
P Bégout, J Bolte, MA Jendoubi
Journal of Differential Equations 259 (7), 3115-3143, 2015
442015
Necessary conditions and sufficient conditions for global existence in the nonlinear Schr\" odinger equation
P Bégout
arXiv preprint arXiv:1207.2033, 2012
332012
Localizing estimates of the support of solutions of some nonlinear Schrödinger equations–The stationary case
P Bégout, JI Díaz
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 29 (1), 35-58, 2012
192012
A generalized interpolation inequality and its application to the stabilization of damped equations
P Bégout, F Soria
Journal of Differential Equations 240 (2), 324-356, 2007
172007
Self-similar solutions with compactly supported profile of some nonlinear Schr {\" o} dinger equations
P Bégout, JI Diaz
arXiv preprint arXiv:1301.0715, 2013
132013
On a nonlinear Schrödinger equation with a localizing effect
P Bégout, JI Díaz
Comptes Rendus Mathematique 342 (7), 459-463, 2006
132006
Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity
P Bégout, JI Díaz
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie …, 2015
122015
A sharper energy method for the localization of the support to some stationary Schr\" odinger equations with a singular nonlinearity
P Bégout, JI Diaz
arXiv preprint arXiv:1301.0136, 2013
122013
Convergence to scattering states in the nonlinear Schrödinger equation
P Bégout
Communications in Contemporary Mathematics 3 (03), 403-418, 2001
72001
Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains
P Bégout, JI Díaz
Journal of Differential Equations 268 (7), 4029-4058, 2020
52020
Maximum decay rate for the nonlinear Schrödinger equation
P Bégout
Nonlinear Differential Equations and Applications NoDEA 11 (4), 451-467, 2004
52004
Maximum decay rate for finite-energy solutions of nonlinear Schrödinger equations
P Bégout
Differential and integral equations 17 (11-12), 1411-1422, 2004
42004
On a stationary Schrödinger equation with periodic magnetic potential
P Bégout, I Schindler
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie …, 2021
12021
Finite time extinction for a damped nonlinear Schr {\" o} dinger equation in the whole space
P Bégout
arXiv preprint arXiv:2005.01471, 2020
12020
Corrigendum to" On damped second-order gradient systems"[J. Differential Equations 259 (7)(2015) 3115-3143]
P Bégout, J Bolte, MA Jendoubi
Journal of Differential Equations 259 (8), 4412-4412, 2015
12015
Finite time extinction for the strongly damped nonlinear Schr {\" o} dinger equation in bounded domains
J Ildefonso Díaz, P Bégout
arXiv, arXiv: 2003.08105, 2020
2020
Étude qualitative de quelques équations et systèmes dynamiques non-linéaires amortis
P Bégout
2019
On damped second-order gradient systems
MA Jendoubi, P Bégout, J Bolte, M Jendoubi
arXiv preprint arXiv:1411.8005, 2014
2014
Propriétés Qualitatives de L'équation de Schrödinger Non-linéaire: Quelques Propriétés Qualitatives de L'équation de Schrödinger Non-linéaire
P Bégout
Éditions universitaires européennes, 2010
2010
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20