Thomas Mesnard
Thomas Mesnard
DeepMind
Adresse e-mail validée de google.com - Page d'accueil
Titre
Citée par
Citée par
Année
Towards biologically plausible deep learning
Y Bengio, DH Lee, J Bornschein, T Mesnard, Z Lin
arXiv preprint arXiv:1502.04156, 2015
2952015
STDP-compatible approximation of backpropagation in an energy-based model
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
Neural computation 29 (3), 555-577, 2017
792017
An objective function for STDP
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
arXiv preprint arXiv:1509.05936, 2015
45*2015
Generalization of equilibrium propagation to vector field dynamics
B Scellier, A Goyal, J Binas, T Mesnard, Y Bengio
arXiv preprint arXiv:1808.04873, 2018
27*2018
Hindsight credit assignment
A Harutyunyan, W Dabney, T Mesnard, M Gheshlaghi Azar, B Piot, ...
Advances in neural information processing systems 32, 12488-12497, 2019
232019
Towards deep learning with spiking neurons in energy based models with contrastive hebbian plasticity
T Mesnard, W Gerstner, J Brea
arXiv preprint arXiv:1612.03214, 2016
142016
Counterfactual credit assignment in model-free reinforcement learning
T Mesnard, T Weber, F Viola, S Thakoor, A Saade, A Harutyunyan, ...
arXiv preprint arXiv:2011.09464, 2020
62020
Geometric entropic exploration
ZD Guo, MG Azar, A Saade, S Thakoor, B Piot, BA Pires, M Valko, ...
arXiv preprint arXiv:2101.02055, 2021
52021
From STDP towards Biologically Plausible Deep Learning
Y Bengio, A Fischer, T Mesnard, S Zhang, Y Wu
ICML 2015, Deep Learning Workshop, 2015
42015
Ghost units yield biologically plausible backprop in deep neural networks
T Mesnard, G Vignoud, J Sacramento, W Senn, Y Bengio
arXiv preprint arXiv:1911.08585, 2019
22019
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–10