Mark Schmidt
Mark Schmidt
Associate Professor of Computer Science, University of British Columbia
Adresse e-mail validée de cs.ubc.ca - Page d'accueil
Titre
Citée par
Citée par
Année
Minimizing finite sums with the stochastic average gradient
M Schmidt, N Le Roux, F Bach
Mathematical Programming (MAPR), 2017, 2013
855*2013
A stochastic gradient method with an exponential convergence rate for finite training sets
N Le Roux, M Schmidt, FR Bach
Advances in Neural Information Processing Systems (NeurIPS), 2012
6962012
Convergence rates of inexact proximal-gradient methods for convex optimization
M Schmidt, N Le Roux, FR Bach
Advances in Neural Information Processing Systems (NeurIPS), 2011
4302011
Accelerated training of conditional random fields with stochastic gradient methods
SVN Vishwanathan, NN Schraudolph, MW Schmidt, KP Murphy
International Conference on Machine Learning (ICML), 2006
3922006
Linear Convergence of Gradient and Proximal-Gradient Methods under the Polyak-Łojasiewicz Condition
H Karimi, J Nutini, M Schmidt
European Conference on Machine Learning (ECML), 2016
3722016
Fast optimization methods for l1 regularization: A comparative study and two new approaches
M Schmidt, G Fung, R Rosales
European Conference on Machine Learning (ECML), 2007
3602007
Block-coordinate Frank-Wolfe optimization for structural SVMs
S Lacoste-Julien, M Jaggi, M Schmidt, P Pletscher
International Conference on Machine Learning (ICML), 2013
3432013
Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics
V Cevher, S Becker, M Schmidt
IEEE Signal Processing Magazine, 2014
2752014
Hybrid deterministic-stochastic methods for data fitting
MP Friedlander, M Schmidt
SIAM Journal on Scientific Computing (SISC), 2012
2582012
Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm
MW Schmidt, E Berg, MP Friedlander, KP Murphy
International Conference on Artificial Intelligence and Statistics (AISTATS), 2009
2572009
Learning graphical model structure using L1-regularization paths
M Schmidt, A Niculescu-Mizil, K Murphy
National Conference on Artificial Intelligence (AAAI), 2007
2262007
minFunc: unconstrained differentiable multivariate optimization in Matlab
M Schmidt
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html, 2005
213*2005
Modeling annotator expertise: Learning when everybody knows a bit of something
Y Yan, R Rosales, G Fung, MW Schmidt, GH Valadez, L Bogoni, L Moy, ...
International Conference on Artificial Intelligence and Statistics (AISTATS), 2010
2012010
Segmenting brain tumors with conditional random fields and support vector machines
CH Lee, M Schmidt, A Murtha, A Bistritz, J Sander, R Greiner
Computer vision for biomedical image applications (CVBIA), 2005
1832005
Method and System for Automatic Detection and Segmentation of Tumors and Associated Edema (Swelling) in Magnetic Resonance (Mri) Images
M Schmidt, R Greiner, AD Murtha
US Patent App. 11/912,864, 2008
1762008
Least squares optimization with l1-norm regularization
M Schmidt
CPSC 542B Course Project Report, 2005
1742005
Fast patch-based style transfer of arbitrary style
TQ Chen, M Schmidt
NeurIPS Workshop on Constructive Machine Learning, 2016
1662016
Graphical model structure learning with l1-regularization
M Schmidt
Ph.D. Thesis, University of British Columbia, 2010
1662010
Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection
J Nutini, M Schmidt, IH Laradji, M Friedlander, H Koepke
International Conference on Machine Learning (ICML), 2015
1592015
3D variational brain tumor segmentation using a high dimensional feature set
D Cobzas, N Birkbeck, M Schmidt, M Jagersand, A Murtha
Mathematical Methods in Biomedical Image Analysis (MMBIA), 2007
1522007
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20