Suivre
Guansong Pang
Guansong Pang
Assistant Professor of Computer Science, Singapore Management University
Adresse e-mail validée de smu.edu.sg - Page d'accueil
Titre
Citée par
Citée par
Année
Deep Learning for Anomaly Detection: A Review
G Pang, C Shen, L Cao, AVD Hengel
ACM Computing Surveys (CSUR) 54 (2), 1-38, 2021
22092021
Viral Pneumonia Screening on Chest X-rays Using Confidence-Aware Anomaly Detection
J Zhang, Y Xie, G Pang, Z Liao, J Verjans, W Li, Z Sun, J He, Y Li, C Shen, ...
IEEE Transactions on Medical Imaging, 2021
962*2021
An improved K-nearest-neighbor algorithm for text categorization
S Jiang, G Pang, M Wu, L Kuang
Expert Systems with Applications 39 (1), 1503-1509, 2012
4292012
Deep anomaly detection with deviation networks
G Pang, C Shen, A Van Den Hengel
Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019
3822019
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning
Y Tian, G Pang, Y Chen, R Singh, JW Verjans, G Carneiro
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
3352021
Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
G Pang, C Yan, C Shen, A van den Hengel, X Bai
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
2532020
Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection
G Pang, L Cao, L Chen, H Liu
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
2362018
Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss
C Yan, G Pang, X Bai, C Liu, X Ning, L Gu, J Zhou
IEEE Transactions on Multimedia 24, 1665-1677, 2021
2102021
Deep isolation forest for anomaly detection
H Xu, G Pang, Y Wang, Y Wang
IEEE Transactions on Knowledge and Data Engineering 35 (12), 12591-12604, 2023
1252023
Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data
G Pang, A van den Hengel, C Shen, L Cao
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021
123*2021
Deep weakly-supervised anomaly detection
G Pang, C Shen, H Jin, A van den Hengel
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
1212023
Deep one-class classification via interpolated gaussian descriptor
Y Chen, Y Tian, G Pang, G Carneiro
Proceedings of the AAAI Conference on Artificial Intelligence 36 (1), 383-392, 2022
119*2022
Catching both gray and black swans: Open-set supervised anomaly detection
C Ding, G Pang, C Shen
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022
972022
Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images
Y Tian, G Pang, F Liu, Y Chen, SH Shin, JW Verjans, R Singh, G Carneiro
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th …, 2021
812021
Deep graph-level anomaly detection by glocal knowledge distillation
R Ma, G Pang, L Chen, A van den Hengel
Proceedings of the fifteenth ACM international conference on web search and …, 2022
782022
Outlier detection in complex categorical data by modelling feature value couplings
G Pang, L Cao, L Chen
Proceedings of the 25th International Joint Conference on Artificial …, 2016
782016
Explainable deep few-shot anomaly detection with deviation networks
G Pang, C Ding, C Shen, A Hengel
arXiv preprint arXiv:2108.00462, 2021
772021
Self-supervised learning for time series analysis: Taxonomy, progress, and prospects
K Zhang, Q Wen, C Zhang, R Cai, M Jin, Y Liu, JY Zhang, Y Liang, ...
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
762024
LeSiNN: Detecting anomalies by identifying least similar nearest neighbours
G Pang, KM Ting, D Albrecht
2015 IEEE international conference on data mining workshop (ICDMW), 623-630, 2015
742015
Pixel-wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes
Y Tian, Y Liu, G Pang, F Liu, Y Chen, G Carneiro
European Conference on Computer Vision, 246-263, 2022
672022
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20