Charlotte Pelletier
Charlotte Pelletier
Univ. Bretagne Sud
Adresse e-mail validée de univ-ubs.fr - Page d'accueil
Titre
Citée par
Citée par
Année
Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
C Pelletier, S Valero, J Inglada, N Champion, G Dedieu
Remote Sensing of Environment 187, 156-168, 2016
2382016
Effect of training class label noise on classification performances for land cover mapping with satellite image time series
C Pelletier, S Valero, J Inglada, N Champion, C Marais Sicre, G Dedieu
Remote Sensing 9 (2), 173, 2017
1222017
Temporal convolutional neural network for the classification of satellite image time series
C Pelletier, GI Webb, F Petitjean
Remote Sensing 11 (5), 523, 2019
1192019
Inceptiontime: Finding alexnet for time series classification
HI Fawaz, B Lucas, G Forestier, C Pelletier, DF Schmidt, J Weber, ...
Data Mining and Knowledge Discovery 34 (6), 1936-1962, 2020
682020
Detection of irrigated crops from Sentinel-1 and Sentinel-2 data to estimate seasonal groundwater use in South India
S Ferrant, A Selles, M Le Page, PA Herrault, C Pelletier, A Al-Bitar, ...
Remote Sensing 9 (11), 1119, 2017
632017
Proximity Forest: An effective and scalable distance-based classifier for time series
B Lucas, A Shifaz, C Pelletier, L O’Neill, N Zaidi, B Goethals, F Petitjean, ...
Data Mining and Knowledge Discovery, 1-29, 2019
442019
TS-CHIEF: a scalable and accurate forest algorithm for time series classification
A Shifaz, C Pelletier, F Petitjean, GI Webb
Data Mining and Knowledge Discovery 34 (3), 742-775, 2020
302020
Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2
S Bousbih, M Zribi, C Pelletier, A Gorrab, Z Lili-Chabaane, N Baghdadi, ...
Remote Sensing 11 (13), 1520, 2019
192019
An assessment of image features and random forest for land cover mapping over large areas using high resolution satellite image time series
C Pelletier, S Valero, J Inglada, G Dedieu, N Champion
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2016
72016
Deep learning for the classification of Sentinel-2 image time series
C Pelletier, GI Webb, F Petitjean
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium …, 2019
62019
Filtering mislabeled data for improving time series classification
C Pelletier, S Valero, J Inglada, G Dedieu, N Champion
2017 9th International Workshop on the Analysis of Multitemporal Remote …, 2017
62017
Using Sentinel-2 image time series to map the state of Victoria, Australia
C Pelletier, Z Ji, O Hagolle, E Morse-McNabb, K Sheffield, GI Webb, ...
2019 10th International Workshop on the Analysis of Multitemporal Remote …, 2019
52019
Patch-based reconstruction of high resolution satellite image time series with missing values using spatial, spectral and temporal similarities
S Valero, C Pelletier, M Bertolino
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2016
52016
Exploring data quantity requirements for domain adaptation in the classification of satellite image time series
B Lucas, C Pelletier, J Inglada, D Schmidt, GI Webb, F Petitjean
2019 10th International Workshop on the Analysis of Multitemporal Remote …, 2019
42019
What can 100,000 books tell us about the international public library e-lending landscape?
R Giblin, J Kennedy, C Pelletier, J Thomas, KG Weatherall, F Petitjean
Information Research 24, 3, 2019
42019
BreizhCrops: A Time Series Dataset for Crop Type Mapping
M Rußwurm, C Pelletier, M Zollner, S Lefèvre, M Körner
The International Archive of Photogrammetry, Remote Sensing, and Spatial …, 2020
32020
Primal sketch of image series with edge preserving filtering application to change detection
M Stephane, P Charlotte
2015 8th International Workshop on the Analysis of Multitemporal Remote …, 2015
32015
New iterative learning strategy to improve classification systems by using outlier detection techniques
C Pelletier, S Valero, J Inglada, G Dedieu, N Champion
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2017
22017
A Bayesian-inspired, deep learning-based, semi-supervised domain adaptation technique for land cover mapping
B Lucas, C Pelletier, D Schmidt, GI Webb, F Petitjean
Machine Learning, 1-33, 2021
12021
Cartographie de l'occupation des sols à partir de séries temporelles d'images satellitaires à hautes résolutions: identification et traitement des données mal étiquetées
C Pelletier
Université de Toulouse, Université Toulouse III-Paul Sabatier, 2017
12017
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20