José Antonio Martín H.
José Antonio Martín H.
Repsol Technology Lab
Adresse e-mail validée de - Page d'accueil
Citée par
Citée par
Dyna-H: A heuristic planning reinforcement learning algorithm applied to role-playing game strategy decision systems
JA Martin H., M Santos, V López, G Botella
Knowledge-Based Systems 32, 28-36, 2012
Adaptation, anticipation and rationality in natural and artificial systems: computational paradigms mimicking nature
JA Martin H., J de Lope, D Maravall
Natural Computing 8 (4), 757, 2009
Orthogonal variant moments features in image analysis
JA Martin H., M Santos, J de Lope
Information Sciences 180 (6), 846-860, 2010
Robust high performance reinforcement learning through weighted k-nearest neighbors
JA Martin H., J de Lope, D Maravall
Neurocomputing 74 (8), 1251-1259, 2011
A method to learn the inverse kinematics of multi-link robots by evolving neuro-controllers
JA Martín H, J de Lope, M Santos
Neurocomputing 72 (13), 2806-2814, 2009
FPGA-based multimodal embedded sensor system integrating low-and mid-level vision
G Botella, JA Martín H, M Santos, U Meyer-Baese
Sensors 11 (8), 8164-8179, 2011
Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots
D Maravall, J de Lope, JA Martín H
Neurocomputing 72 (4-6), 887-894, 2009
The knn-td reinforcement learning algorithm
JA Martin H., J de Lope, D Maravall
International Work-Conference on the Interplay Between Natural and …, 2009
Search and retrieval of plasma wave forms: Structural pattern recognition approach
S Dormido-Canto, G Farias, J Vega, R Dormido, J Sánchez, N Duro, ...
Review of scientific instruments 77 (10), 10F514, 2006
A distributed reinforcement learning architecture for multi-link robots
JA Martin H, J De Lope
4th International Conference on Informatics in Control, Automation and …, 2007
Ex〈 α〉: An effective algorithm for continuous actions Reinforcement Learning problems
JA Martin H, J de Lope
Industrial Electronics, 2009. IECON'09. 35th Annual Conference of IEEE, 2063 …, 2009
Learning autonomous helicopter flight with evolutionary reinforcement learning
JA Martin H., J de Lope
International Conference on Computer Aided Systems Theory, 75-82, 2009
Analysis and solution of a predator–protector–prey multi-robot system by a high-level reinforcement learning architecture and the adaptive systems theory
JA Martin H., J de Lope, D Maravall
Robotics and Autonomous Systems 58 (12), 1266-1272, 2010
A divisive hierarchical k-means based algorithm for image segmentation
JA Martin H, J Montero, J Yáñez, D Gomez
Intelligent Systems and Knowledge Engineering (ISKE), 2010 International …, 2010
Dynamic clustering and modeling approaches for fusion plasma signals
JA Martin H, MS Penas, G Farias, N Duro, J Sanchez, R Dormido, ...
Instrumentation and Measurement, IEEE Transactions on 58 (9), 2969-2978, 2009
Applying reinforcement learning to multi-robot team coordination
Y Sanz, J de Lope, JA Martin H.
International Workshop on Hybrid Artificial Intelligence Systems, 625-632, 2008
Evolution of Neuro-controllers for Multi-link Robots
JA Martín H, J de Lope, M Santos
Innovations in Hybrid Intelligent Systems, 175-182, 2007
Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm
JA Martın H
PLoS ONE 8 (1), e53437, 2013
A k-NN based perception scheme for reinforcement learning
JA Martin H., J de Lope
International Conference on Computer Aided Systems Theory, 138-145, 2007
Linear Bayes policy for learning in contextual-bandits
JA Martín H., AM Vargas
Expert Systems with Applications 40 (18), 7400–7406, 2013
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20