Max Budninskiy
Max Budninskiy
Data Scientist, Disney / True[X]
Verified email at caltech.edu
Title
Cited by
Cited by
Year
Discrete 2‐tensor fields on triangulations
F de Goes, B Liu, M Budninskiy, Y Tong, M Desbrun
Computer Graphics Forum 33 (5), 13-24, 2014
322014
Optimal Voronoi Tessellations with Hessian-based Anisotropy
M Budninskiy, B Liu, F De Goes, Y Tong, P Alliez, M Desbrun
ACM Transactions on Graphics (TOG) 35 (6), 242, 2016
162016
Power coordinates a geometric construction of barycentric coordinates on convex polytopes
M Budninskiy, B Liu, Y Tong, M Desbrun
ACM Transactions on Graphics (TOG) 35 (6), 1-11, 2016
132016
Spectral Affine‐Kernel Embeddings
M Budninskiy, B Liu, Y Tong, M Desbrun
Computer Graphics Forum 36 (5), 117-129, 2017
92017
On kinematic control extremals
VV Alexandrov, MA Budninskiy
2013 European Control Conference (ECC), 210-214, 2013
72013
Operator-adapted wavelets for finite-element differential forms
M Budninskiy, H Owhadi, M Desbrun
Journal of Computational Physics 388, 144-177, 2019
62019
Parallel transport unfolding: a connection-based manifold learning approach
M Budninskiy, G Yin, L Feng, Y Tong, M Desbrun
arXiv preprint arXiv:1806.09039, 2018
62018
Material-adapted refinable basis functions for elasticity simulation
J Chen, M Budninskiy, H Owhadi, H Bao, J Huang, M Desbrun
ACM Transactions on Graphics (TOG) 38 (6), 1-15, 2019
32019
Laplacian-optimized diffusion for semi-supervised learning
M Budninskiy, A Abdelaziz, Y Tong, M Desbrun
Computer Aided Geometric Design, 101864, 2020
2020
Geometry-Driven Model Reduction
MA Budninskiy
Caltech, 2019
2019
Optimal Voronoi Tessellations with Hessian-based Anisotropy Supplemental Material
M Budninskiy, B Liu, F de Goes, Y Tong, P Alliez, M Desbrun
The system can't perform the operation now. Try again later.
Articles 1–11