Follow
Hiroto Saigo
Title
Cited by
Cited by
Year
Graph kernels for chemical informatics
L Ralaivola, SJ Swamidass, H Saigo, P Baldi
Neural networks 18 (8), 1093-1110, 2005
5982005
Protein homology detection using string alignment kernels
H Saigo, JP Vert, N Ueda, T Akutsu
Bioinformatics 20 (11), 1682-1689, 2004
5022004
A novel representation of protein sequences for prediction of subcellular location using support vector machines
S Matsuda, JP Vert, H Saigo, N Ueda, H Toh, T Akutsu
Protein Science 14 (11), 2804-2813, 2005
1892005
Large‐scale prediction of disulphide bridges using kernel methods, two‐dimensional recursive neural networks, and weighted graph matching
J Cheng, H Saigo, P Baldi
Proteins: Structure, Function, and Bioinformatics 62 (3), 617-629, 2006
1672006
gBoost: a mathematical programming approach to graph classification and regression
H Saigo, S Nowozin, T Kadowaki, T Kudo, K Tsuda
Machine Learning 75, 69-89, 2009
1602009
Partial least squares regression for graph mining
H Saigo, N Krämer, K Tsuda
Proceedings of the 14th ACM SIGKDD international conference on knowledge …, 2008
1082008
Local alignment kernels for biological sequences
JP Vert, H Saigo, T Akutsu
Kernel methods in computational biology, 131-154, 2004
1012004
Extracting sets of chemical substructures and protein domains governing drug-target interactions
Y Yamanishi, E Pauwels, H Saigo, V Stoven
Journal of chemical information and modeling 51 (5), 1183-1194, 2011
942011
Mining complex genotypic features for predicting HIV-1 drug resistance
H Saigo, T Uno, K Tsuda
Bioinformatics 23 (18), 2455-2462, 2007
682007
Optimizing amino acid substitution matrices with a local alignment kernel
H Saigo, JP Vert, T Akutsu
BMC bioinformatics 7, 1-12, 2006
672006
Functional census of mutation sequence spaces: the example of p53 cancer rescue mutants
SA Danziger, SJ Swamidass, J Zeng, LR Dearth, Q Lu, JH Chen, J Cheng, ...
IEEE/ACM transactions on computational biology and bioinformatics 3 (2), 114-125, 2006
652006
DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction
N Thapa, M Chaudhari, S McManus, K Roy, RH Newman, H Saigo, DB Kc
BMC bioinformatics 21, 1-10, 2020
542020
RF-GlutarySite: a random forest based predictor for glutarylation sites
HJ Al-Barakati, H Saigo, RH Newman
Molecular omics 15 (3), 189-204, 2019
372019
Graph classification
K Tsuda, H Saigo
Managing and mining graph data, 337-363, 2010
372010
CNN-BLPred: a convolutional neural network based predictor for β-lactamases (BL) and their classes
C White, HD Ismail, H Saigo, DB Kc
BMC bioinformatics 18, 221-232, 2017
292017
Scalable partial least squares regression on grammar-compressed data matrices
Y Tabei, H Saigo, Y Yamanishi, SJ Puglisi
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge …, 2016
282016
A linear programming approach for molecular QSAR analysis
H Saigo, T Kadowaki, K Tsuda
International Workshop on Mining and Learning with Graphs 2006 (MLG 2006), 85-96, 2009
282009
DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins
M Chaudhari, N Thapa, K Roy, RH Newman, H Saigo, BKC Dukka
Molecular omics 16 (5), 448-454, 2020
232020
Local alignment kernels for protein sequences
V Jean-Philippe
Kernel methods in computational biology, 2004
232004
Kyushu University
T Zendo
Japan, 0
21
The system can't perform the operation now. Try again later.
Articles 1–20